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A method for real-time estimation of parameters in a linear dynamic state-space model was developed and
studied. The application is aircraft dynamic model parameter estimation from measured data in flight. Equation
error in the frequency domain was used with a recursive Fourier transform for the real-time data analysis. Linear
and nonlinear simulation examples and flight test data from the F-18 High Alpha Research Vehicle were used to
demonstrate that the technique produces accurate model parameter estimates with appropriate error bounds. Pa-
rameter estimates converged in less than 1 cycle of the dominant dynamic mode, using no a priori information, with
control surface inputs measured in flight during ordinary piloted maneuvers. The real-time parameter estimation
method has low computational requirements and could be implemented aboard an aircraft in real time.

Nomenclature
A,B,C,D = system matrices
Ef} = expectation operator
g = acceleration due to gravity, ft/s®
h = altitude, ft
j = imaginary number, \/(—1)
M = Mach number
N = total number of samples
R = measurement noise covariance matrix
Re = real part
t = time
Vi = true airspeed. ft/s
X, U,y = state, input, and output vectors
Z = measured output vector at time { Af
o = angle of attack, rad
B = sideslip angle, rad
84, 6, = aileron, rudder deflections, rad
8., 6, = elevator, stabilator deflections, rad
LY = Kronecker delta
6 = p-dimensional parameter vector
V; = discrete measurement noise vector
ot = variance
w = angular frequency, rad/s
Subscripts
i = value at time i At
0 = trim or initial value
Superscripts
T = transpose
t = complex conjugate transpose
- = discrete Fourier transform
- = estimate

= matrix inverse

Introduction

EAL-TIME identification of dynamic models is a requirement
for indirect adaptive or reconfigurable control.! One approach
for satisfying this requirement is to assume the dynamic model has a
linear structure with time-varying parameters to account for changes
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in the flight condition, stores, configuration, remaining fuel, or from
various types of failures, wear, or damage. The task is then toidentify
accurale linear model parameter estimates from measured data in
real time, so that the adaptive control logic can make the necessary
changes to the control law to achieve stability and performance
goals.

Two main problems plague accurate real-time parameter estima-
tion: noise and data information content. It is difficult to design a
parameter estimation technique that is insensitive to noise but still
responds rapidly to sudden changes in the system dynamics, mainly
because it takes a fairly long data record to distinguish noise from a
sudden change in the dynamics. This problem can be handled in the
time domain using recursive least squares and a forgetting factor,’
or by using sequential batch least squares with short data records
and including various constraints in the parameter estimation cost
function.** If an extended Kalman filtering approach®® is used,
discriminating signal {rom noise is implemented through weighting
matrices that represent assumed measurement and process noise co-
variances. For all of these time-domain methods, some adjustment
of one or more Luning parameters must be done in simulation. In ad-
dition, the standard errors for the model parameter estimates, which
are important both for failure detection and adaptive or reconfig-
urable control, cannot be accurately and reliably computed using
recursive or sequential batch time-domain methods.

In the context of airplane flight, lack of information content in
the data can be problematic because there are frequently extended
periods where the control and statc variables are fairly constant.
Signal levels are at or below the (relatively constant) noise level. In
this circumstance, a time-domain regression method will give very
inaccurate parameter estimates unless the estimation is regularized
by including a term in the cost function that penalizes movement of
the parameters away from some a priori known values (for example,
values from wind-tunnel tests) and/or a term that penalizes time vari-
ation of the parameter estimates.* Tuning parameters are required
for this approach because the magnitude of the penalty term(s) must
be balanced properly relative to the least-squares part of the cost
function used for parameter estimation based on measured data.

Another problem that falls in the category of poor data informa-
tion content is data collinearity due to the control system.® Many
control laws move more than one control surface at the same time or
move control surfaces in proportion to state variables with a small
time dclay. When states and controls are nearly proportional to one
another, it is impossible to identify individual stability and control
derivatives from the measured data alone.

There are many parameter estimation methods, but the require-
ment of being simple enough to be implemented in real time aboard
the aircraft narrows the field. In particular, any method that iterates
through the data must be eliminated. The current work: is an inves-
tigation of a single-step frequency-domain method for the real-time
parameter estimation task and an evaluation of its suitability for
aircraft problems. This real-time parameter estimation method was
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first proposed as a component of a technique for in-flight system
identification.'? In the present work, the real-time paramelter estima-
tion method is developed further and applied to realistic simulation
and flight-test data.

The next section gives the problem statement and outlines the
necessary theory. Following this, the real-time parameter estima-
tion method is applied to a simulation example, where a linear truth
model is used with outputs corrupted by noise similar to that seen in
flight and by noise that is worse than usual. The application is iden-
tifying an accurate model for the longitudinal rigid-body dynamics
of a conventional fighter. The real-time parameter estimation pro-
cedure is further demonstrated with a longitudinal example using
flight-test data and a nonlinear simulation example, where both lon-
gitudinal and lateral/directional parameters are estimated.

Theoretical Development

Airplanc dynamics can be described by the following linear model
equations'’:

x(1) = Ax(1) + Bu(t) (H

x(0) = xg )

y() = Cx(t) + Du(r) (3)
L=y + v i=12..,N @

Matrices A, B, C, and D in Egs. (1) and (3) contain stability and
control derivatives that are assumed as constant model parameters
to be estimated from flight data. Repeating the parameter estimation
at short intervals produces piecewise constant estimates {or time-
varying model parameters in the linear model structure. The input
quantities are control surface deflections, 8, or §,, §,, and §,, with
the states selected from air data, V}, @, and 8; body axis angular
velocities, p, g, and r, and Euler angles, ¢, 6, and . Oulput quan-
tities can include the states and translational accelerations, «;, a,,
and a,.

Equation Error in the Frequency Domain
The finite Fouricr transtorin of a signal x(r) 1s defined by

;
X(w) = / x(r)e 7 di (%)
0
which can be approximated by
N»; i
Y(w) =~ Ar L xj e I (6)
i=e

Subscript i indicates the variable value at time i A¢, and At is the
sampling interval. The summation i Eq. (6)1s defined as the discrete
Fourier transform,

N-1
X(w) = }:x, e dui (7
i=0
so that
X(w) ~ X(w)At (8)

Some fairly straightforwaid corrections’? can be made to Eq. (8)
to remove the inaccuracy resulting from Eq. (8) being a simple Euler
approximation fo the finite Fourier transform of Eq. (5). However,
if the sampling rate is much higher than the frequencies of interest
(as is true in this case), then the corrections are small and can be
safely ignored.

Applying the Fourier transform to Egs. (1) and (3) gives

jwX(w) = A¥(w) + Bu(w) 9
y{w) = CX(w) + Duw) (10

When the states, outputs, and inpuis are mcasured, individual
state or output equations from vector Egs. (9) or (10) can be used in

an equation error formulation to estimate the stability and control
derivatives contained in matrices A, B, C, and D.
For the kth state equation of vector Eq. (9), the cost function is

I~ . _
h=3 Z ljwa %o (n) — Ay ¥(n) — Beii(m) [ (i

n=1

where A and By, are the kth rows of matrices A and B, respectively,
and ¥ (n) is the kth element of vector ¥ for frequency w,. Symbols
X(n) and r(n) denote the Fourier transform of the state and control
vectors for frequency w,. There are m terms in the summation, corre-
sponding to m frequencies of interest, and each transformed variable
depends on frequency. Similar cost expressions can be written for
individual output equations from vector Eq. (10).

Denating the vector of unknown model parameters in A, and B,
by 6. the problem can be formulated as a standard least-squares
regression problem with complex data.

Y=X0+¢ 12)
where
Jwi X (1)
Joa ¥ (2)
Y= . (13)
jwm—fk(’n)
Ty atm
(2 a2
X= . . (14)

xTm)y atom

and e represents the complex equation error in the frequency domain.
The least-squares cost function is

J =LY - X0)"(Y - X6) (15)

which is identical to the cost in Eq. (11). The parameter vector
estimate that minimizes this cost function is computed from'?

6 = [Re(X'X)] 'Re(X'Y) (16)
The estimated parameter covariance matrix is
covi@) = E((6—6)0 — 0)T} = o2 [Re(XTX)]! 7

where the equation error variance o® can be estimated from the
residuals,

6% = [1/(m — pI(Y — X6)' (Y — X)) (18)

and p is the number of elements in parameter vector 8. Parameter
standard errors are computed as the square root of the diagonal
elements of the cov(8) matrix from Eq. (17) using &2 from Eq. (18).

Recursive Fourier Transform

For a given frequency w, the discrete Fourier transform in Eq. (7)
at sample time i is related to the discrete Fourier transform at time
i—lby

X,(u)): X,_l((u)-}-x,exp(—jwlAt) (19)
where
exp(—jwiAt) = exp(—jwAr)expi—jw(i — 1)At) 20)

The quantity exp(— jwAt) is constant for a given frequency and
constant sampling interval. It follows that the discrete Fourier trans-
form can be computed for a given trequency at cach time step using
one addition in Eq. (19) and two multiplications: one in Eq. (20)
using the stored constant exp(— jwAt) lor frequency w, and one
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in Eq. (19). There is no need to store the time-domain data in
memory when computing the discrete Fourier transform in this way
because each sampled data point is processed immediately. Time-
domain data from all preceding manecuvers can be used in all subse-
quent analysis by simply continuing the recursive calculation of the
Fourier transform. In this sense, the recursive Fourier transform acts
as memory for the mformation in the data. More data from more
maneuvers improves the quality of the data in the frequency domain
without increasing memory requirements to store it. In addition, the
Fourier transform is available at any time iAr. The approximation
to the finite Fourier transform is completed using Eq. (8).

Rigid-body dynamics of piloted aircraft lie in the rather narrow
frequency band of approximately 0.01-1.5 Hz. Theretore, it is pos-
sible to select closely spaced fixed frequencies for the Fourier trans-
form and the subsequent data analysis. Excluding zero frequency
removes trim values and measurement biases, and so it is not nec-
essary to estimate bias parameters. Using a limited frequency band
for the Fourier transformation confines the data analysis to the fre-
quency band where the system dynamics reside and automatically
lilters wideband measurement noise or structural response oulside
the frequency band of interest.

For aii of the examples studied in this work, frequency spac-
ing of 0.04 Hz on the interval [0.1-1.5] Hz was found to be ad-
equate, giving 36 evenly spaced frequencies for each transformed
lime-domain signal Finer frequency spacing requires slightly more
computations, but was found to have little effect on the example re-
sults. When the frequency spacing is very coarse, there is a danger
of omilting important frequency components. and this can lead to
inaccurate parameter estimates. In general, a good rule of thumb
is o usc frequencies evenly spaced at .04 Hz over the bandwidth
for the dynamic system. For good results, the bandwidih should be
limited to the frequency range where the signal components in the
frequency domain are at least twice the amplitude of the wideband
noise ievel in the frequency domain. However, the algorithm is ro-
bust refative to these design choices, so that the selections to be
made are not difficult.

For airplane dynamic modeling, the number of time-domain sig-
nals t¢ be transformed is usually low (nine or less, more if there
are inany control surfaces), so that this approach requires a small
amount of computer memory. Because the data analysis is done in
the frequency domain, the memory required is fixed and independent
of the time length of the flight maneuvers.

The recursive Fourier transform update need not be done for
every sampled time point. Skipping some time points effectively
decimates the data prior to Fourier transtormation. This saves com-
putation and does not adversely impact the frequency-domain data
because the Nyquist irequency {equal to one-half the sampling fre-
quency* is usually much higher than the relatively low frequencies
being used in the recursive Fourier transform.

Examples
For longitudinal aircraft short-period dynamics, the state vector
x and input vector u in Eq. (1) are defined by

x=la g u =15 @n

System matrices containing the model parameters are

A=|l P B=| % 22)
T M. oM, T M, =

This mode! assumes @ effects can be subsumed into the Z; and
M, derivatives. Parameter Z,’, includes the inertial term, that is,
Z, =1+ Z,. Inthis and all of the other examples, state equations
were used {or the equation error parameter estimation.

In the first example, a perturbation elevator input was applied to a
known linear model to produce simulated state and output responses.
Figure 1 shows the elevator input 8,. The first & s of the elevator
input were taken from measured flight test data for a longitudinal
tracking task. Constant clevator deflection is held for the final 7 s,
lo simulate low data information content. The simulated aircraft
is a conventional F-16 {Refs. 11 and 14) with forward c.g. position
(0.2&)in straight and level trimmed flight at 10,000 {t, 7-deg angie of

attack, and Mach 0.37. The simulated outputs were corrupted with
20% Gaussian random white noise. This made the signal-to-noise
ratio 5-to- 1 for each simulated output measurement. Figure 2 shows
the simulated measured perturbation angle of attack & and pitch rate
g. The elevator input was assumed to be measured without noise,
which is a close approximation to reality. Model parameter values
used to generate the simulated test data, called true values, are given
in column 2 of Table 1. Parameter estimation was done in real time
using equation error in the frequency domain applied to the two
state equations, with the Fourier transform computed recursively, as
described earlier. All angular quantities were expressed in radians
for the data analysis, but were plotted in degrees. Angular rates were
expressed in radians per second for the data analysis and plotted in
degrees per second.

Figure 3 shows a time history of M, model parameter esti-
mates based on the simulated noisy data only. Plots for the other
model parameters were similar. The model parameter estimates and

Table 1 F-16 linear simulation results, ag = 7 deg,
hg = 10,000 ft, Mg = 0.37

20% noise estimate, 50% noise estimate.

Parameter  True value (standard error) (standard error)

Zu —0.600 ~0.624 —0.602
(0.047) {0.132)
z, 0.950 0.960 0.986
(0.016) (0.044)
75 -0.1i5 —0.104 ~0.134
0.017) (0.049)
M, —4.300 —4197 —4.021
(0.136) (0.354)
M, ~1.200 -1238 —1.200
(6.045) (©.119)
M,, —5.157 -5.157 —5.246
(0.048) (0.130)

Time (s)

Fig.1 Elevator input.

1
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a
0
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Fig. 2 Simulated measured outputs, 20% noise.
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Fig. 3 Parameter estimation, 20% noise.
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Fig. 4 Simulated measured output, S0% noise.

standard errors were computed once a second using Eqs. (16-18)
with frequency-domain data from the recursive Fourier transtornn in
Eqs. (19) and (20). This update rate for the parameter estumation was
used throughout the examples, bul was chosen atbitrarily. Parameter
cstimation updates can be done at a faster or slower rate, with the up-
per limit defined by the rate used in the recursive Fourier ransform.
The atgorithm required no starting values for the parameters, and
the estimates were not regularized in any way with a priort values
or constraints on temporal changes in the parameter estimates. The
first paramelter estimates are shown at 2 s, because the parameter
estimates after 1 s were poor with very large standard errors, due
to the lack of information content in the data duning the first sec-
ond of the maneuver. Initial parameter estimate accuracy and speed
of convergence could be improved using a priori information, but
this was avoided so that the performance of the real-time paramcter
estimation algorithm alone could be studied.

Figure 3 shows that the parameter estimates converge Lo the truc
value. The calculated standard errors are representative of the es-
timated parameter accuracy throughout the mancuver and do not
suffer from the covariance wind-up problem characteristic of recur-
sive time-domain methods. Column 3 of Table | contains parameter
estimates with corresponding standard errors in parentheses. These
results are for the end of the 15-s maneuver. Every parameter esti-
mate is within 1 standard error of the true value, indicating that
the parameter estimation is accurate and that the estimated standard
errors properly represent the true accuracy of the parameter esti-
mates. The calculated standard errors accurately convey information
on the quality of the parameter estimates throughout the maneuver
and do not become smaller with increasing maneuver time when
there is no information in the data.

Figure 4 shows the same simulated model outputs using the same
input to the same model, but with the added Gaussian random white
noise level raised from 20% to 50%, reducing the signal-lo-noise
ratio to 2-to- . In addition, two simulated data dropouts with values
of — 100 were added to the simulated pitch rate output. Plots in Fig. 5

x>
)
IS
,
[{=] @ ~ o]
o ARRRARREEARAREAR
- : .
- ! | !

Y

'
[}

ofrrnlu Ak LA

Time (s)

Fig. § Parameter estimation, 50% noise.

show that the parameter estimates in this case again converge to the
true values. although the standard error vatues are generally higher,
due to the increased noise level. Plots for the model parameters not
shown were similar. The convergence rate of the parameter esti-
mates to the true values was similar to the lower noise case, requir-
ing approximately 4 s of data. This corresponds to approximately
1.4 periods of the short-period natural frequency for the simulation
mode!. Considering that no substantial information is contained in
the data for the tirst 2 s, this is an excellent result. Discounting the
first 2 s, the parameters were accurately estimated from approxi-
mately 2 s of data, corresponding to 0.7 cycles of the short-period
mode. This may not be fast enough for effective use in an adaptive
or reconfigurable control scheme, in which case some mechanism
for augmenting the dala information, such as a priori parameler es-
timates or auxiliary signal injection on the control surfaces, will be
required to reduce the convergence time. Still, considering that algo-
rithm used only simulated measured data from an ordinary piloted
mancuver, the resuits show a fast and accurate convergence for the
parameter estimates.

The real-time parameter estimation algorithm is robust to mea-
surement noisc levels and infrequent data dropouts because of the
automatic filtering inherent in using a limited bandwidth for the
recursive Fourier transform. In effect, the data dropouts look like
high-frequency noise. Column 4 of Table 1 gives the parameter es-
timates and standard crrors for the 50% noise case at the end of
the 15-s maneuver. As before, every parameter estimate is within
+1 standard error of the true value, indicating that the parameter
estimates and standard errors are accurate. The algorithm gave good
results for even higher noise levels, with the upper limit noise level
corresponding to a signal-to-noise ratio around 0.5. As noise level in-
creased further, parameter estimate accuracy gradually deteriorated.

The linear simulation and the real-time data analysis were pro-
grammed and run in MATLAB® 5.3 (Ref. 15). Sampling rate for the
data was 40 Hz, and the recursive Fourier transform updates were
done at 40 Hz. The real-time estimation algorithm ran roughly 10
times faster than real time (1.5 s for a 15-s maneuver) on a Gate-
way 450-MHz E-4200 serial processor, running Microsoft Windows
NT 4.0.
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The next example used real flight-test data from the F-18 High
Alpha Research Vehicle (HARV) to demonstrate the real-time pa-
rameter estimation method. Figure 6 shows the measured stabilator
deflection for this 14-s maneuver. Measured outputs are shown in
Fig. 7. The mancuver was a sequence of doublets implemented by
the pilot from a steady trim condition at 20-deg angle of attack,
24,100-ft altitude, and Mach 0.34. Parameter estimates are plotted
as a function of time in Fig. 8, along with dashed lines indicat-

F-18 HARV Maneuver 153B

Time (s)

Fig. 6 Stabilator input.

F-18 HARV Maneuver 153B

24 L T T T T { T T T T ! T T T ]

P 1

(deg) 1
15

(dps)
15

Time (s)

Fig. 7 Measured outputs.

ing the £26 error bounds. Parameter estimates from standard batch
time-domain output error parameter estimation'® are plotted as solid
lines for comparison. The real-time parameter estimation algorithm
produced parameter estimates and standard errors that were in agree-
ment with the batch time-domain estimates after about § s, of which
1.5 s was steady trim with no information in the data. One cycle
of the short-period mode using the batch time-domain parameter
estimates was 7.5 s. Table 2 contains results at the end of the 14-s
maneuver from batch time-domain and real-time frequency-domain
parameter estimations.

As in the simulated data cases, the standard errors for the pa-
rameter estimates computed by the real-time parameter estimation
algorithm were consistent with the accuracy of the parameter esti-
mates throughout the maneuver. Specifically, the error bounds were
large at the beginning of the maneuver and smaller as more informa-
tion was obtained from the data. Except for a few instances that are
1o be expected because of statistical variation, the standard errors
were representative of the accuracy of the estimated parameters.

Sampling rate for the flight-test data was 50 Hz, and the recursive
Fourier transform updates were done at 25 Hz. The same implemen-
tation and computer were used as before. In this case. the real-time
parameter estimation algorithm ran roughly 14 times faster than real
time (1 s for a 14-s mancuver) because of the lower rate used for the
recursive Fourier transform,

In the final cxample, control surface inputs measured in {light
during a piloted longitudinal/lateral tracking task were applied to
a nonlinear F-16 simulation'" ' with forward c.g. position (0.28).
Figurc 9 shows the control surface inputs. The maneuver was ini-
tiated from a steady trim condition at 10-deg angle of attack,
10,0001t altitude, and Mach 0.32. Simulated output data from the
noniinear simulation was corrupted with 20% Gaussian white noise.
The simulated noisy outputs are plotted in Fig. 10. In this case,
lateral/directional linear model parameters were estimated in addi-
tion to the longitudinal model parameters from Egs. (21) and (22).

Table 2 F18 HARYV flight-test results, «y = 20 deg,
hy = 24,100 ft, My = 0.34

Batch ume domain Recursive frequency-domain
Parameter  estimate (standard error) estimate (standard crior)

Zy —0.218 (0.040) -0.209 (0.084)
Z(I 1.047 (0.036) 1.074 (0.052)
Zi, -0.057 (00406) —0.041 (0.080)
M, —0.649 (0.044) —0.509 (0.174)
M, -0.003 (0.032) —0.177 (0 107)
M, —1.257 (0.003) —1.415 (0 1065)

F-18 HARYV Maneuver 153B

~~~~~ 95% Confidence Limit {25)

| — Batch Tima Domain Value
A
¥4
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Fig. 8 Parameter estimation.
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e AR AL SRR S e o m s For the lateral/directional aircraft dynamics, the state vector x and
g : : . input vector u in Eq. (1) are defined by
x={p p r o u=5, &) 23)

System matrices containing the model parameters are

Yg sine —cosa (g/V,)cos@

Ly L, L, 0
A= 24
Ny N, N 0
0 1 tan6 0
0 Y,
) L;, L
Time (s) B= N”" N“’ 25)
By &
Fig. 9 Trackingi ts.
ig racking inpu o 0
« B N T Figure 11 shows time histories of selected longitudinal and lat-
(deg) 10 : ; ! ' eral/directional model parameter estimates, with dashed lincs indi-
9 Y 2N T

‘ cating the £24 error bounds. Comparison values for the stability
Vo [ s and contro! derivatives (plotted as solid lines) were calculated from
SR e s the nonlincar $imulation using central finite differences with a 1%
A Ceeee perturbation size. Plots for the model parameters not shown were
‘ j . / similar. As in the other examples, the performance of the real-time
"""""" e estimation algorithm was excellent, in spite of a relatively short

F R S S N Sk PR Ld 1 SR S T . . - - . .

{(10-s) maneuver and low information content longitudinally. Param-
eter estimates converged to the finite difference values with appro-
priate standard eror estimates. Cycle times for the short-period and
Dutch roli modes. based on the finite difference parameter values,
were 3.8 and 2.4 s, respectively. The real-lime parameter estimation
algorithm required 4 s to converge to the finite difference values for
the model parameters using the tracking inputs measured in flight
and plotted in Fig. 9.

The sampling rate for the data was 80 Hz, and the recursive Fourier
transform updates were donc at 40 Hz. For the same implementa-
tion and computer as before, the real-time estimation algorithm for
the longitudinal and lateral/directional models together ran roughly
cight times faster than real time (1.2s for a 10-s maneuver).

0
R
NhA R ON SO

S5 S S S N A L S L |

—_ - N
0O 0O O0ON = O —

Conclusions

A technique was developed for estimating linear model parame-
1ers in real time using an cquation error formulation in the frequency

20E. 0. Laaad : domain with a recursive Fourier transform. Simulation and flight-
0 2 4T‘ 6 8 10 test examples demonstrated that the method gives accurate real-time
ime (s) estimates of model parameters and standard errors. The examples
Fig. 10 Simulated measured outputs, 20% noise. also showed that the advantages of this approach include automatic
-+ - 95% Confidence Limit (28)
—— Finite Difference Value
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Fig. 11 Parameter estimation.
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noise filtering, robustness to high noise levels and dala dropouts,
fixed memory requirements regardless of the time record length, no
bias parameters to estimate, and good performance for low infor-
mation content in the data. All of these favorable characteristics, as
well as low computational requirements, follow trom analyzing the
data in the frequency domain with a recursive Fourier transforma-
tion using fixed discrete frequencies within the frequency range for
the dynamic motion of interest.

The practical applicability of the method was demonstrated us-
ing a flight-test data example and a nonlinear simulation exam-
ple using real flight-test tracking inputs implemented by the pi-
lot. Data information requirements for good parameter estimates
were found to be low enough that they could be satisfied using
ordinary pilot inputs measured in flight. The algorithm exhibited
rapid convergence to accurate parameter values with standard er-
rors that properly represented the accuracy of the parameter esti-
mates. Typical convergence times were less than 1 period of the
dominant dynamic mode. No starting values were required for the
parameter estimates, no tuning parameters had to be adjusted, and
there was no temporal or spatial regularization during the parame-
ter estimation. Parameter estimates and standard errors were based
on measured data alone. The procedure was shown to have rea-
sonable computational requirements and ran much faster than real
time, even when implemented in a high-level language such as
MATLAB®.

The technique could be used for dimensional or nondimensional
parameter estimation and could also be used with general nonlinear
models, as long as the model is linear in the parameters. Previous
work'? has outlined how the technique could be used for real-time
aerodynamic parameter estimation and flight envelope expansion.
All states and inputs must be measured, but this should not be a
problem in modern aircraft with continuous automatic feedback
control, for which the method is intended.

The real-time parameter estimation technique studied in this work
represents a fundamental building block in fulfilling the require-
ments for adaptive or reconfigurable control. However, each exam-
ple case included was for a specific flight condition and aircraft
configuration. Future developments must focus on tracking rapid
time-varying linear model parameters resulting from changes in the
flight condition, stores, configuration, remaining fuel, or from var-
ious types of failures, wear, or damage. In addition, there must be
some work done to address the question of excitation input design

when insufficient information content in the data precludes accurate
parameter eslimates.
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